A non-singular, local ${ }^{1} S_{0}$ neutron-proton potential

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1972 J. Phys. A: Gen. Phys. 5 L125
(http://iopscience.iop.org/0022-3689/5/11/016)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.72
The article was downloaded on 02/06/2010 at 04:28

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A non-singular, local ${ }^{1} \mathbf{S}_{0}$ neutron-proton potential

M W KERMODE
Department of Applied Mathematics, University of Liverpool, PO Box 147, Liverpool L69 3BX, UK

MS received 3 August 1972

Abstract

A non-singular, local ${ }^{1} \mathrm{~S}_{0} \mathrm{n}-\mathrm{p}$ potential is introduced. This potential gives phase shifts for $\mathrm{n}-\mathrm{p}$ scattering which agree, within experimental error, with the experimental phase shifts.

The purpose of this letter is to introduce a local potential which gives a good fit to the ${ }^{1} \mathrm{~S}_{0} \mathrm{n}$-p phase shifts (8) of MacGregor et al (1969). This is a report of the first stage of work in which it is hoped that similar potentials for the other angular momentum and isospin $\mathbf{N}-\mathbf{N}$ states can be obtained. This work is an attempt to extend that of Hamada and Johnston (1962) and Reid (1968) to include potentials with shapes not unlike those found by Sprung and Srivastava (1969) and at the same time to obtain a better fit to the experimental data. The resulting potentials should then be very useful for nuclear calculations, for example, the three-body problem (Hennell and Delves 1972).

The $n-p$ potential V is a very complicated quantity and it will probably be a long time before it can be determined. In principle, once V is known the Schrödinger equation can be solved to give phase shifts at all energies and from these phase shifts one can, again in principle, solve the inverse scattering problem and construct an equivalent local potential $V(r)$, that is, one which gives the same phase shifts as V. Here r is the distance between the neutron and the proton.

In the present work it is taken for granted that $V(r)$ exists. An approximation to $V(r)$ is constructed using the following arguments. It is known that the $\mathrm{n}-\mathrm{p}$ potential V, and hence $V(r)$, has as its asymptotic form, the well known OPE potential, that is,

$$
V(r) \sim-14.947 \mathrm{e}^{-\mu r / r}, \quad \mu=0.7 \mathrm{fm}^{-1} .
$$

Suppose that $f(r)=r V(r)$ is a sufficiently smooth function. Then under the transformation $x=\mathrm{e}^{-\mu r}(f(r) \rightarrow g(x)), g(x)$ can be written in terms of Legendre polynomials, that is,

$$
g(x)=\sum_{n=0}^{\infty} a_{n} P_{n}(x)=\sum_{n=1}^{\infty} b_{n} x^{n} .
$$

Hence

$$
f(r)=\sum_{n=1}^{\infty} b_{n} \mathrm{e}^{-n \mu r}
$$

Furthermore, since the phase shifts are not known beyond a laboratory energy of 460 MeV , the potential $V(r)$ cannot be well determined in the vicinity of $r=0$. Therefore, we take $V(0)=0$.

Table 1.

n	$V(n)$ $(\mathrm{MeV} \mathrm{fm})$	$V(n+1)$ $(\mathrm{MeV} \mathrm{fm})$	$V(n+2)$ $(\mathrm{MeV} \mathrm{fm})$
1	14.947	-190.252	1634.987
4	-1041.816	2798.761	-16629.85
7	2412.788	-24141.64	159461.9
10	145437.0	146515.4	-2937508

Table 2.

$E_{\text {lab }}$ (MeV)	$\begin{aligned} & \delta_{\exp } \\ & (\mathrm{deg}) \end{aligned}$	$\delta_{\text {pot }}$ (deg)	$\Delta \delta_{\text {exp }}$ (deg)	$\begin{aligned} & \left\|\delta_{\text {exp }}-\delta_{\mathrm{pot}}\right\| \\ & \text { (deg) } \end{aligned}$
1	$62 \cdot 43$	62.43	0.01	0.00
2	$65 \cdot 03$	65.05	0.03	0.02
3	$65 \cdot 35$	$65 \cdot 40$	0.06	0.05
4	$65 \cdot 06$	$65 \cdot 12$	0.08	0.06
5	$64 \cdot 53$	$64 \cdot 61$	0.11	0.08
6	63.91	63.99	$0 \cdot 14$	0.08
8	$63 \cdot 57$	$62 \cdot 65$	0.20	\dagger
10	$61 \cdot 23$	$61 \cdot 31$	0.26	0.08
12	59.95	59.99	0.32	0.04
14	58.73	58.73	0.37	0.00
16	$57 \cdot 56$	$57 \cdot 52$	0.42	$0 \cdot 04$
18	$56 \cdot 46$	$56 \cdot 36$	0.47	$0 \cdot 10$
20	55.41	$55 \cdot 25$	0.52	$0 \cdot 16$
25	52.96	$52 \cdot 66$	0.62	0.30
30	$50 \cdot 73$	50.29	0.71	0.44
40	$46 \cdot 72$	$46 \cdot 07$	0.86	0.65
50	$43 \cdot 16$	$42 \cdot 39$	0.98	0.77
60	39.90	$39 \cdot 11$	$1 \cdot 10$	0.79
70	36.89	$36 \cdot 15$	$1 \cdot 21$	0.74
80	$34 \cdot 08$	$33 \cdot 44$	1.33	0.64
90	31.45	$30 \cdot 95$	1.44	$0 \cdot 50$
100	28.97	$28 \cdot 64$	$1 \cdot 55$	0.33
120	24.41	24.45	1.74	0.04
140	20.31	20.73	1.88	0.42
160	$16 \cdot 62$	$17 \cdot 38$	1.97	0.76
180	$13 \cdot 27$	$14 \cdot 32$	2.02	1.05
200	$10 \cdot 22$	$11 \cdot 50$	2.04	1.28
220	$7 \cdot 45$	$8 \cdot 87$	$2 \cdot 02$	1.42
240	4.92	$6 \cdot 42$	2.00	$1 \cdot 50$
260	$2 \cdot 61$	$4 \cdot 11$	1.97	$1 \cdot 50$
280	0.49	1.93	1.96	1.44
300	-1.46	-0.15	1.98	$1 \cdot 31$
320	-3.25	-2.12	$2 \cdot 04$	$1 \cdot 13$
340	-4.90	-4.01	$2 \cdot 16$	0.89
360	-6.41	-5.82	$2 \cdot 32$	0.59
380	-7.81	-7.55	$2 \cdot 53$	0.26
400	$-9 \cdot 10$	-9.23	$2 \cdot 78$	0.13
420	$-10 \cdot 29$	-10.84	$3 \cdot 07$	0.55
440	-11.39	-12.40	$3 \cdot 39$	1.01
460	-12.41	-13.91	$3 \cdot 73$	$1 \cdot 50$

[^0]The potential $V(r)$ was approximated by the potential

$$
W(r)=-\sum_{n=1}^{14} V(n) \frac{\mathrm{e}^{-n \mu r}}{r},
$$

where $V(1)=14.947 \mathrm{MeV} \mathrm{fm}$ and $V(13)$ and $V(14)$ were chosen to make $W(0)=0$. The values of $V(n)$ listed in table 1 give the phase shifts $\delta_{\text {pot }}$ in column 3 of table 2. Each of these phase shifts is in very good agreement with the corresponding experimental value $\delta_{\text {exp }} \pm \Delta \delta$ (except at 8 MeV where it would appear that $\delta_{\text {exp }}$ should be $62 \cdot 57^{\circ}$).

The potential $W(r)$ is zero at the origin, has a maximum value of about 11440 MeV at 0.09 fm , is zero at 0.57 fm , has a minimum value of about -139 MeV at 0.72 fm and tends to zero as r tends to infinity.

It is interesting to note that if it were not for the sign of $V(10)$ the signs of the $V(n)$ would alternate. It is even more interesting to note that for the expansion in terms of Legendre polynomials, that is

$$
W(r)=-r^{-1} \sum_{n=0}^{14} U(n) \mathrm{P}_{n}\left(\mathrm{e}^{-u r}\right)
$$

the signs of the $U(n)$ do alternate. Truncated values of these coefficients are given in table 3.

Table 3.

n	$U(n)$ $(\mathrm{MeV} \mathrm{fm})$	$U(n+1)$ $(\mathrm{MeV} \mathrm{fm})$	$U(n+2)$ $(\mathrm{MeV} \mathrm{fm})$
0	-3.36×10^{5}	$+9.38 \times 10^{5}$	-1.36×10^{6}
3	$+1.53 \times 10^{6}$	-1.47×10^{6}	$+1.25 \times 10^{6}$
6	-9.40×10^{5}	$+6.36 \times 10^{5}$	-3.83×10^{5}
9	$+2.06 \times 10^{5}$	-9.70×10^{4}	$+3.93 \times 10^{4}$
12	-1.35×10^{4}	$+3.38 \times 10^{3}$	-7.21×10^{2}

Full details of the method used to determine the $V(n)$ will be given when the ${ }^{1} S_{0} p-p$ phase shifts have been fitted: the potential given in this letter does not provide a good fit to the $\mathrm{p}-\mathrm{p}$ data. The $\mathrm{p}-\mathrm{p}$ case is slightly more complicated since the Coulomb and vacuum polarization potentials must be taken into account.

I wish to thank Professor L M Delves for suggesting that I look for local potentials to fit the nucleon-nucleon scattering data.

References

Hamada T and Johnston I D 1962 Nucl. Phys. 34 382-403
Hennell M A and Delves L M 1972 Phys. Lett. 40B 20-2
MacGregor M H, Arndt R A and Wright R M 1969 Phys. Rev. 182 1714-28
Reid R V 1968 Ann. Phys. 50 411-48
Sprung D W L and Srivastava M K 1969 Nucl. Phys. A 139 605-24

[^0]: \dagger Perhaps the value of $\delta_{\text {exp }}$ at 8 MeV should be 62.57° ?

